Test: adoc

This page should look pretty much similar to the other test pages.

md | rst

Link from adoc to md

Link from adoc to rst

Link to this Internal link check.

(f)(y)=12πnnf(x)eiyxdx(\mathcal{F}f)(y) = \frac{1}{\sqrt{2\pi}^{\ n}} \int_{\mathbb{R}^n} f(x)\, e^{-\mathrm{i} y \cdot x} \,\mathrm{d} x

Complex math example, the Fourier transform.

Inline: ab&\sqrt{a}^{b} \&.

test section with duplicate heading

Test: adoc

test section with duplicate heading as the document title

Very complex math

x0GL𝔻xbx0GL𝔻xaf(x)=limδ01δbk=0xx0δ(1)k(bk)x0GL𝔻xaf(xkδ)expand x0GL𝔻xb=limδ01δbk=0xx0δ(1)k(bk)limε01εaj=0xkδx0ε(1)j(aj)f(xkδjε)expand x0GL𝔻xa=limδ0limε01δb1εak=0xx0δj=0xkδx0ε(1)k(1)j(bk)(aj)f(xkδjε)push constants into lim and =limε01εb+ak=0xx0εj=0xx0εk(1)k+j(bk)(aj)f(x(k+j)ε)(1), unify δ and ε=limε01εb+ai=0xx0εk=0i(1)i(bk)(aik)f(xiε)rearrange triangle-sum, over i=k+j=limε01εb+ai=0xx0ε(1)i(b+ai)f(xiε)Vandermonde’s identity=x0GL𝔻xb+af(x)\begin{align} & \quad\,\, {}^{GL}_{x_0}\mathbb{D}^b_x {}^{GL}_{x_0}\mathbb{D}^a_x f(x) \\ & = \lim_{\delta \to 0} \frac{1}{\delta^b} \sum_{k=0}^{\lfloor \frac{x-x_0}{\delta} \rfloor} (-1)^k {b \choose k} {}^{GL}_{x_0}\mathbb{D}^a_x f(x-k\delta) & \text{expand ${}^{GL}_{x_0}\mathbb{D}^b_x$} \\ & = \lim_{\delta \to 0} \frac{1}{\delta^b} \sum_{k=0}^{\lfloor \frac{x-x_0}{\delta} \rfloor} (-1)^k {b \choose k} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^a} \sum_{j=0}^{\lfloor \frac{x-k\delta-x_0}{\varepsilon} \rfloor} (-1)^j {a \choose j} f(x-k\delta-j\varepsilon) & \text{expand ${}^{GL}_{x_0}\mathbb{D}^a_x$} \\ & = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} \frac{1}{\delta^b} \frac{1}{\varepsilon^a} \sum_{k=0}^{\lfloor \frac{x-x_0}{\delta} \rfloor} \sum_{j=0}^{\lfloor \frac{x-k\delta-x_0}{\varepsilon} \rfloor} (-1)^k (-1)^j {b \choose k} {a \choose j} f(x-k\delta-j\varepsilon) & \text{push constants into $\lim$ and $\sum$} \\ & = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{b+a}} \sum_{k=0}^{\lfloor \frac{x-x_0}{\varepsilon} \rfloor} \sum_{j=0}^{\lfloor \frac{x-x_0}{\varepsilon} \rfloor - k} (-1)^{k+j} {b \choose k} {a \choose j} f(x-(k+j)\varepsilon) & \text{(1), unify $\delta$ and $\varepsilon$} \\ & = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{b+a}} \sum_{i=0}^{\lfloor \frac{x-x_0}{\varepsilon} \rfloor} \sum_{k=0}^{i} (-1)^i {b \choose k} {a \choose i-k} f(x-i\varepsilon) & \text{rearrange triangle-sum, over $i = k+j$} \\ & = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{b+a}} \sum_{i=0}^{\lfloor \frac{x-x_0}{\varepsilon} \rfloor} (-1)^i {b+a \choose i} f(x-i\varepsilon) & \text{Vandermonde's identity} \\ & = {}^{GL}_{x_0}\mathbb{D}^{b+a}_x f(x) \end{align}